
ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

While loops

2
While loops

Outline

• In this lesson, we will:

– See how to implement while loops in C++

– Implement while loops that

• Play a guessing game with the user

• Find all prime factors of a given integer

• Implement the Collatz conjecture

– Learn how to convert a description of an algorithm to one that you
can program

• We will use the greatest-common divisor algorithm

– Observe that all for loops can be written as while loops

3
While loops

Repetition statements

• A for loop is a special case of a repetition statement:

– The loop body is executed a fixed number of times based on

• The initial value of a loop variable,

• A condition involving the loop variable, and

• An update to that loop variable executed after the loop body is run

• Very often, at compile time, you can determine how often this loop
will be executed

for () {

}

int k{0}; k < n; ++k
// Loop body
std::cout << k << ", ";

4
While loops

Repetition statements

• In some cases, however, we don’t know how often a loop body will
be executed

– An alternative approach is a while loop

– A while loop only has a condition and a loop body

• The loop body is run as long as the condition is TRUE

while (Boolean-valued condition) {

// The loop body or block of statements

// - to be executed as long as the

// condition is 'true'

}

// Continue executing here as soon as the

// condition evaluates to 'false'

5
While loops

Infinite loops

• A common loop is the infinite loop:

while (true) {

// The loop body or block of statements

// - will be repeatedly executed forever

// or until we get out of the loop otherwise

}

– You can get out of an infinite loop with a break statement or a return
statement.

6
While loops

Accessing a value from the user

• Like with the for loop, a while loop can use a break statement:

// Must be declared outside the loop

int n{};

while (true) {

// Ensure the user enters a positive integer

std::cout << "Enter a positive integer: ";

std::cin >> n;

if (n > 0) {

break;

}

}

7
While loops

Accessing a value from the user

• Here is an alternate strategy:

int n{ 0 }; // 0 will cause the condition to fail

while (n <= 0) {

std::cout << "Enter a positive integer: ";

std::cin >> n;

}

8
While loops

A guessing game

• Suppose we want to play a guessing game:

– Player A enters a number to be guessed

– Player B continues to try to guess that number until that Player B
guesses correctly

• Put another way:

– Inside an infinite loop:

• Query Player B for a guess

• If that guess is correct, we will break out of this loop

9
While loops

A guessing game

• A while loop is used when it is unknown how often a loop may run

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

int secret_number{};

std::cout << "Player A: enter a secret number: ";

std::cin >> secret_number;

10
While loops

A guessing game

while (true) {

int guessed_number{};

std::cout << "Player B: enter a guess: ";

std::cin >> guessed_number;

if (guessed_number == secret_number) {

std::cout << "You guessed the secret number"

<< std::endl;

break;

}

}

return 0;

}

else {

std::cout "Incorrect guess" << std::endl;

}

11
While loops

The game of high-low

• Let’s refine this guessing game so that

– Player A enters a number between 1 and 100 to be guessed

– Player B continues to try to guess that number

• If the guess is correct, the game is over

• If the guess is greater than the number,

we tell the player that the guess is too high

• Otherwise, we tell the player that the guess is too low

• Put another way:

– In an infinite loop:

• Query Player B for a guess

• If that guess is correct, we will break out of this loop

• Otherwise, we will tell the player if the guess was too high or too low

12
While loops

The game of high-low

• Implementing this game
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

int secret_number{};

std::cout << "Player A: enter a secret number from 1 to 100: ";

std::cin >> secret_number;

while ((secret_number < 1) || (secret_number > 100)) {

std::cout << "Enter a secret number from 1 to 100: ";

std::cin >> secret_number;

}

13
While loops

The game of high-low

• An alternative condition
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

int secret_number{};

std::cout << "Player A: enter a secret number from 1 to 100: ";

std::cin >> secret_number;

while (!((secret_number >= 1) && (secret_number <= 100))) {

std::cout << "Enter a secret number from 1 to 100: ";

std::cin >> secret_number;

}

14
While loops

The game of high-low

while (true) {

int guessed_number{};

std::cout << "Player B: enter a guess from 1 to 100: ";

std::cin >> guessed_number;

if (guessed_number == secret_number) {

std::cout << "You guessed the secret number"

<< std::endl;

break;

}

}

return 0;

}

else if (guessed_number < secret_number) {

std::cout "Too low, guess again..." << std::endl;

} else {

std::cout "Too high, guess again..." << std::endl;

}

15
While loops

Finding prime factors of an integer

• Suppose we want to print all prime factors of an integer:

– For example:

• 123 = 3 × 41

• 124 = 2 × 2 × 31

• 125 = 5 × 5 × 5

• Now, 2666 is divisible by 2, so the prime factors are:

– 2 and the prime factors of 2666 ÷ 2 = 1333

– This looks like an interesting strategy…

16
While loops

Finding prime factors of an integer

• Does this approach work?

– Given n, start with k = 2, 3, 4, 5, 6, 7, …

if n is divisible by k, assign n the value of n/k and go to the next

for (int k{ 2 }; k < n; ++k) {

if (n%k == 0) {

std::cout << k << ", ";

n /= k;

}

}

– What is the output for n = 14, 28, 56?

17
While loops

Finding prime factors of an integer

int main() {

int n{};

std::cout << "Enter a positive integer to be factored: ";

std::cin >> n;

int possible_factor{2};

while (n > 1) {

while (n%possible_factor == 0) {

std::cout << possible_factor << ", ";

n /= possible_factor;

}

// Ideally, we should go to the next highest prime,

// but this works, too.

++possible_factor;

}

return 0;

}

18
While loops

Collatz conjecture

• The Collatz conjuecture says that if you start with any positive
integer n and

– If n is even, divide it by two

– If n is odd, multiply it by three and add one

• If ever n = 1, then the sequence carries on forever:

1, 4, 2, 1, 4, 2, 1, 4, 2, 1, …

• The Collatz conjecture says that regardless of your initial n,

this sequence always gets to 1

19
While loops

Collatz conjecture

• We can try this with any number of initial values

1

2, 1

3, 10, 5, 16, 8, 4, 2, 1

4, 2, 1

5, 16, 8, 4, 2, 1

6, 3, 10, 5, 16, 8, 4, 2, 1

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

8, 4, 2, 1

9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

10, 5, 16, 8, 4, 2, 1

11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

12, 6, 3, 10, 5, 16, 8, 4, 2, 1

7

20
While loops

Collatz conjecture

• Here are some longer examples

– For example,
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137,

412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445,

1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438,

719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154,

3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92,

46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1

171, 514, 257, 772, 386, 193, 580, 290, 145, 436, 218, 109, 328, 164, 82, 41, 124, 62, 31, 94, 47,

142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466,

233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251,

754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619,

4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154,

577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160,

80, 40, 20, 10, 5, 16, 8, 4, 2, 1

21
While loops

Collatz conjecture

• We can implement this:
int main() {

int n{};

std::cout << "Enter a positive integer: ";

std::cin >> n;

while (n != 1) {

std::cout << n << ", ";

if (n%2 == 0) {

n /= 2;

} else {

n = 3*n + 1;

}

}

std::cout << 1 << std::endl;

return 0;

}

22
While loops

How to design a while loop

• Suppose you are attempting to implement an algorithm where you
repeated apply a number of steps

– How do you make the transition from manual to programmatic?

• Recommendation:

– Do the algorithm on paper—in full

– Examine the steps you took, and determine:

• What steps were repeated?

• What condition caused you to stop repeating the steps?

• What local variables could you use?

23
While loops

• From secondary school, you saw that the algorithm for calculating
the greatest common denominator (gcd)

– You are asked to find the gcd of 8008 and 8085

– You first note that 8085 > 8008

– Next, you find that 8085 ÷ 8008 equals 1 with a remainder of 77

– Next, you find that 8008 ÷ 77 equals 104 with a remainder of 0

– From this, you are told that the gcd is 77

The greatest-common divisor

24
While loops

• Let’s try again:

– You are asked to find the gcd of 1583890 and 85800

– You first note that 1583890 > 85800

– Next, you find that 1583890 ÷ 85800 has a remainder of 39490

– Next, you find that 85800 ÷ 39490 has a remainder of 6820

– Next, you find that 39490 ÷ 6820 has a remainder of 5390

– Next, you find that 6820 ÷ 5390 has a remainder of 1430

– Next, you find that 5390 ÷ 1430 has a remainder of 1100

– Next, you find that 1430 ÷ 1100 has a remainder of 330

– Next, you find that 1100 ÷ 330 has a remainder of 110

– Next, you find that 330 ÷ 110 has a remainder of 0

– From this, you are told that the gcd is 110

The greatest-common divisor

25
While loops

The greatest-common divisor

1583890 85800 39490

85800 39490 6820

39490 6820 5390

6820 5390 1430

5390 1430 1100

1430 1100 330

1100 330 110

330 110 0

m n m%n

while (m%n != 0) {

}

int rem{m%n};
m = n;
n = rem;

std::cout << "The gcd is " << n << std::endl;

26
While loops

• Thus, here is our program:
int main() {

int m{};

int n{};

std::cout << "Enter the first integer: ";

std::cin >> m;

if (m < 0) {

m = -m;

}

std::cout << "Enter a second integer: ";

std::cin >> n;

if (n < 0) {

n = -n;

}

The greatest-common divisor

27
While loops

// Make sure m >= n

if (m < n) {

int tmp{m};

m = n;

n = tmp;

}

// Perform our gcd algorithm

while (m%n != 0) {

int rem{m%n};

m = n;

n = rem;

}

std::cout << "The gcd is " << n << std::endl;

return 0;

}

The greatest-common divisor

28
While loops

// Make sure m >= n

if (m < n) {

int tmp{m};

m = n;

n = tmp;

}

// Perform a slightly different gcd algorithm

int rem{m%n}; // We now have m, n, m%n

while (rem != 0) {

m = n;

n = rem;

rem = m%n;

}

std::cout << "The gcd is " << n << std::endl;

return 0;

}

The greatest-common divisor

29
While loops

• Testing:

– Testing two prime numbers: the gcd should be 1
Enter the first integer: 157

Enter a second integer: 521

The gcd is 1

– Testing a multiple of a number: gcd should be smaller
Enter the first integer: 53241

Enter a second integer: 48609033

The gcd is 53241

– Testing two relatively prime composites: gcd should be 1
Enter the first integer: 43010

Enter a second integer: 150423

The gcd is 1

– Testing two highly composite numbers: gcd should be 2310
Enter the first integer: 48510

Enter a second integer: 254100

The gcd is 2310

The greatest-common divisor

30
While loops

• Testing with negative numbers:
Enter the first integer: -157

Enter a second integer: 521

The gcd is 1

Enter the first integer: 157

Enter a second integer: -521

The gcd is 1

Enter the first integer: -157

Enter a second integer: -521

The gcd is 1

The greatest-common divisor

31
While loops

• Testing with zero: the gcd should be the other number
Enter the first integer: 0

Enter a second integer: 521

Floating point exception (core dumped)

– Issue, just like dividing by zero causes a program to terminate

so does calculating m%0

The greatest-common divisor

32
While loops

• Thus, after we enter the numbers, we should check before we run
the algorithm:

// Make sure m >= n

if (m < n) {

int tmp{m};

m = n;

n = tmp;

}

if (n == 0) {

std::cout << "The gcd is " << m << std::endl;

return 0;

}

// Perform our gcd algorithm

// ...

The greatest-common divisor

33
While loops

• The following two are essentially identical:

int sum{0};

for (int k{0}; k < n; ++k) {

sum += k;

}

int sum{0};

int k{0};

while (k < n) {

sum += k;

++k;

}

Every for loop can be
written as a while loop

34
While loops

• Question:

– What do you do if you accidentally execute a program that has an
infinite loop?

• Solution:

– In all IDEs,
there is a stop button that is active when a program is executing

– At the console, press Ctrl-C

Infinite loop?

35
While loops

Summary

• Following this lesson, you now

– Understand how to implement while loops in C++

– Seen how to implement various algorithms requiring looping
statements:

• Playing guessing games

• Finding all prime factors

• The Collatz conjecture

• The factorial function

– Understand how to convert a description of an algorithm to one that
you can program

• The example we used was the greatest-common divisor

– Understand that all for loops can be written as while loops

– Know how to terminate a program in an infinite loop

36
While loops

References

[1] Wikipedia

https://en.wikipedia.org/wiki/While_loop

[2] cplusplus.com

http://www.cplusplus.com/doc/tutorial/control/

[3] tutorialspoint

https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm

https://en.wikipedia.org/wiki/While_loop
http://www.cplusplus.com/doc/tutorial/control/
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm

37
While loops

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

38
While loops

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

39
While loops

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

