
2020-07-06 

1 

ECE 150 Fundamentals of Programming 

Prof. Hiren Patel, Ph.D. 

Douglas Wilhelm Harder, M.Math. LEL 
hdpatel@uwaterloo.ca    dwharder@uwaterloo.ca 

 

© 2018 by Douglas Wilhelm Harder and Hiren Patel. 

     Some rights reserved. 

While loops 

2 
While loops 

Outline 

• In this lesson, we will: 

– See how to implement while loops in C++ 

– Implement while loops that 

• Play a guessing game with the user 

• Find all prime factors of a given integer 

• Implement the Collatz conjecture 

– Learn how to convert a description of an algorithm to one that you 
can program 

• We will use the greatest-common divisor algorithm 

– Observe that all for loops can be written as while loops 

3 
While loops 

Repetition statements 

• A for loop is a special case of a repetition statement: 

– The loop body is executed a fixed number of times based on 

• The initial value of a loop variable, 

• A condition involving the loop variable, and 

• An update to that loop variable executed after the loop body is run 

 

 

 

 

 

 

 

• Very often, at compile time, you can determine how often this loop 
will be executed 

 

for (                      ) { 
  
    
} 

int k{0}; k < n; ++k 
// Loop body 
std::cout << k << ", "; 

4 
While loops 

Repetition statements 

• In some cases, however, we don’t know how often a loop body will 
be executed 

– An alternative approach is a while loop 

– A while loop only has a condition and a loop body 

• The loop body is run as long as the condition is TRUE 

 while ( Boolean-valued condition ) { 

     // The loop body or block of statements 

     // - to be executed as long as the 

     //   condition is 'true' 

 } 

 

 // Continue executing here as soon as the 

 // condition evaluates to 'false' 



2020-07-06 

2 

5 
While loops 

Infinite loops 

• A common loop is the infinite loop: 

 while ( true ) { 

     // The loop body or block of statements 

     // - will be repeatedly executed forever 

     //   or until we get out of the loop otherwise 

 } 

6 
While loops 

Accessing a value from the user 

• Like with the for loop, a while loop can use a break statement: 

 // Must be declared outside the loop 

 int n{}; 

 

 while ( true ) { 

           // Ensure the user enters a positive integer 

     std::cout << "Enter a positive integer: "; 

     std::cin >> n; 

 

     if ( n > 0 ) { 

         break; 

           } 

 } 

7 
While loops 

Accessing a value from the user 

• Like with the for loop, a while loop can use a break statement: 

 int n{}; 

 std::cout << "Enter a positive integer: "; 

 std::cin >> n; 

 

 while ( n <= 0 ) { 

     std::cout << "Enter a positive (> 0) integer: "; 

     std::cin >> n; 

 } 

8 
While loops 

A guessing game 

• Suppose we want to play a guessing game: 

– Player A enters a number to be guessed 

– Player B continues to try to guess that number until that Player B 
guesses correctly 

 

• Put another way: 

– Inside an infinite loop: 

• Query Player B for a guess 

• If that guess is correct, we will break out of this loop 



2020-07-06 

3 

9 
While loops 

A guessing game 

• A while loop is used when it is unknown how often a loop may run 

#include <iostream> 

 

// Function declarations 

int main(); 

 

// Function definitions 

int main() { 

    int secret_number{}; 

    std::cout << "Player A: enter a secret number: "; 

    std::cin >> secret_number; 

     

10 
While loops 

A guessing game 

    while ( true ) { 

        int guessed_number{}; 

        std::cout << "Player B: enter a guess: "; 

        std::cin >> guessed_number; 

 

        if ( guessed_number == secret_number ) { 

            std::cout << "You guessed the secret number" 

                      << std::endl; 

            break; 

        } 

          

         

    } 

 

    return 0; 

} 

  else { 

    std::cout "Incorrect guess" << std::endl; 

} 

11 
While loops 

The game of high-low 

• Let’s refine this guessing game so that  

– Player A enters a number between 1 and 100 to be guessed 

– Player B continues to try to guess that number 

• If the guess is correct, the game is over 

• If the guess is greater than the number, 

 we tell the player that the guess is too high 

• Otherwise, we tell the player that the guess is too low 

 

 

• Put another way: 

– In an infinite loop: 

• Query Player B for a guess 

• If that guess is correct, we will break out of this loop 

• Otherwise, we will tell the player if the guess was too high or too low 

12 
While loops 

The game of high-low 

• Implementing this game 
#include <iostream> 

 

// Function declarations 

int main(); 

 

// Function definitions 

int main() { 

    int secret_number{}; 

    std::cout << "Player A: enter a secret number from 1 to 100: "; 

    std::cin >> secret_number; 

 

    while ( (secret_number < 1) || (secret_number > 100) ) { 

        std::cout << "Enter a secret number from 1 to 100: "; 

        std::cin >> secret_number; 

    } 

     



2020-07-06 

4 

13 
While loops 

The game of high-low 

• An alternative condition 
#include <iostream> 

 

// Function declarations 

int main(); 

 

// Function definitions 

int main() { 

    int secret_number{}; 

    std::cout << "Player A: enter a secret number from 1 to 100: "; 

    std::cin >> secret_number; 

 

    while ( !( (secret_number >= 1) && (secret_number <= 100) ) ) { 

        std::cout << "Enter a secret number from 1 to 100: "; 

        std::cin >> secret_number; 

    } 

     

14 
While loops 

The game of high-low 

    while ( true ) { 

        int guessed_number{}; 

        std::cout << "Player B: enter a guess from 1 to 100: "; 

        std::cin >> guessed_number; 

 

        if ( guessed_number == secret_number ) { 

            std::cout << "You guessed the secret number" 

                      << std::endl; 

            break; 

        } 

          

         

         

         

    } 

 

    return 0; 

} 

  else if ( guessed_number < secret_number ) { 

    std::cout "Too low, guess again..." << std::endl; 

} else { 

    std::cout "Too high, guess again..." << std::endl; 

} 

15 
While loops 

Finding prime factors of an integer 

• Suppose we want to print all prime factors of an integer: 

– For example: 

• 123 = 3 × 41 

• 124 = 2 × 2 × 31 

• 125 = 5 × 5 × 5 

 

• Now, 2666 is divisible by 2, so the prime factors are: 

– 2 and the prime factors of 2666 ÷ 2 = 1333 

 

• This looks like an interesting strategy… 

16 
While loops 

Finding prime factors of an integer 

int main() { 

    int n{}; 

    std::cout << "Enter a positive integer to be factored: "; 

    std::cin >> n; 

 

    int possible_factor{2}; 

 

    while ( n > 1 ) { 

        while ( n%possible_factor == 0 ) { 

            std::cout << possible_factor << ", "; 

            n /= possible_factor; 

        } 

 

        // Ideally, we should go to the next highest prime, 

        // but this works, too. 

        ++possible_factor; 

    } 

 

    return 0; 

} 



2020-07-06 

5 

17 
While loops 

Collatz conjecture 

• The Collatz conjuecture says that if you start with any positive 
integer n and 

– If n is even, divide it by two 

– If n is odd, multiply it by three and add one 

 

• If ever n = 1, then the sequence carries on forever: 

 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, … 

 

• The Collatz conjecture says that regardless of your initial n, 

 this sequence always gets to 1 

18 
While loops 

Collatz conjecture 

• We can try this with any number of initial values 

1 

2, 1 

3, 10, 5, 16, 8, 4, 2, 1 

4, 2, 1 

5, 16, 8, 4, 2, 1 

6, 3, 10, 5, 16, 8, 4, 2, 1 

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 

8, 4, 2, 1 

9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 

10, 5, 16, 8, 4, 2, 1 

11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 

12, 6, 3, 10, 5, 16, 8, 4, 2, 1 

7 

19 
While loops 

Collatz conjecture 

• Here are some longer examples 

– For example, 
27, 82, 41, 124, 62, 31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 

412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 

1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 

719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 

3077, 9232, 4616, 2308, 1154, 577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 

46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1 

 

171, 514, 257, 772, 386, 193, 580, 290, 145, 436, 218, 109, 328, 164, 82, 41, 124, 62, 31, 94, 47, 

142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137, 412, 206, 103, 310, 155, 466, 

233, 700, 350, 175, 526, 263, 790, 395, 1186, 593, 1780, 890, 445, 1336, 668, 334, 167, 502, 251, 

754, 377, 1132, 566, 283, 850, 425, 1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 

4858, 2429, 7288, 3644, 1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 

577, 1732, 866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53, 160, 

80, 40, 20, 10, 5, 16, 8, 4, 2, 1 

20 
While loops 

Collatz conjecture 

• We can implement this: 
int main() { 

    int n{}; 

    std::cout << "Enter a positive integer: "; 

    std::cin >> n; 

 

    while ( n != 1 ) { 

        std::cout << n << ", "; 

 

        if ( n%2 == 0 ) { 

            n /= 2; 

        } else { 

            n = 3*n + 1; 

        } 

    } 

 

    std::cout << 1 << std::endl; 

 

    return 0; 

} 



2020-07-06 

6 

21 
While loops 

How to design a while loop 

• Suppose you are attempting to implement an algorithm where you 
repeated apply a number of steps 

– How do you make the transition from manual to programmatic? 

 

• Recommendation: 

– Do the algorithm on paper—in full 

– Examine the steps you took, and determine: 

• What steps were repeated? 

• What condition caused you to stop repeating the steps? 

• What local variables could you use? 

 

 

22 
While loops 

• From secondary school, you saw that the algorithm for calculating 
the greatest common denominator (gcd) 

– You are asked to find the gcd of 8008 and 8085 

– You first note that 8085 > 8008 

– Next, you find that 8085 ÷ 8008 equals 1 with a remainder of 77 

– Next, you find that 8008 ÷ 77 equals 104 with a remainder of 0 

– From this, you are told that the gcd is 77 

 

 

The greatest-common divisor 

23 
While loops 

• Let’s try again: 

– You are asked to find the gcd of 1583890 and 85800 

– You first note that 1583890 > 85800 

– Next, you find that 1583890 ÷ 85800 has a remainder of 39490 

– Next, you find that 85800 ÷ 39490 has a remainder of 6820 

– Next, you find that 39490 ÷ 6820 has a remainder of 5390 

– Next, you find that 6820 ÷ 5390 has a remainder of 1430 

– Next, you find that 5390 ÷ 1430 has a remainder of 1100 

– Next, you find that 1430 ÷ 1100 has a remainder of 330 

– Next, you find that 1100 ÷ 330 has a remainder of 110 

– Next, you find that 330 ÷ 110 has a remainder of 0 

– From this, you are told that the gcd is 110 

The greatest-common divisor 

24 
While loops 

The greatest-common divisor 

1583890  85800 39490 

85800 39490 6820 

39490 6820 5390 

6820 5390 1430 

5390 1430 1100 

1430 1100 330 

1100 330 110 

330 110 0 

m n m%n 

while ( m%n != 0 ) { 
 
 
 
} 

int rem{m%n}; 
m = n; 
n = rem; 

std::cout << "The gcd is " << n << std::endl; 



2020-07-06 

7 

25 
While loops 

• Thus, here is our program: 
int main() { 

    int m{}; 

    int n{}; 

 

    std::cout << "Enter the first integer: "; 

    std::cin >> m; 

 

    if ( m < 0 ) { 

        m = -m; 

    } 

 

    std::cout << "Enter a second integer: "; 

    std::cin >> n; 

 

    if ( n < 0 ) { 

        n = -n; 

    } 

The greatest-common divisor 

26 
While loops 

    // Make sure m >= n 

    if ( m < n ) { 

        int tmp{m}; 

        m = n; 

        n = tmp; 

    } 

 

    // Perform our gcd algorithm 

    while ( m%n != 0 ) { 

        int rem{m%n}; 

        m = n; 

        n = rem; 

    } 

 

    std::cout << "The gcd is " << n << std::endl; 

 

    return 0; 

} 

The greatest-common divisor 

27 
While loops 

    // Make sure m >= n 

    if ( m < n ) { 

        int tmp{m}; 

        m = n; 

        n = tmp; 

    } 

 

    // Perform a slightly different gcd algorithm 

    int rem{m%n};               // We now have m, n, m%n 

 

    while ( rem != 0 ) { 

        m = n; 

        n = rem; 

        rem = m%n; 

    } 

 

    std::cout << "The gcd is " << n << std::endl; 

 

    return 0; 

} 

The greatest-common divisor 

28 
While loops 

• Testing: 

– Testing two prime numbers: the gcd should be 1 
Enter the first integer: 157 

Enter a second integer: 521 

The gcd is 1 

– Testing a multiple of a number: gcd should be smaller 
Enter the first integer: 53241 

Enter a second integer: 48609033 

The gcd is 53241 

– Testing two relatively prime composites: gcd should be 1 
Enter the first integer: 43010 

Enter a second integer: 150423 

The gcd is 1 

– Testing two highly composite numbers: gcd should be 2310 
Enter the first integer: 48510 

Enter a second integer: 254100 

The gcd is 2310 

 

The greatest-common divisor 



2020-07-06 

8 

29 
While loops 

• Testing with negative numbers: 
Enter the first integer: -157 

Enter a second integer: 521 

The gcd is 1 

 

Enter the first integer: 157 

Enter a second integer: -521 

The gcd is 1 

 

Enter the first integer: -157 

Enter a second integer: -521 

The gcd is 1 

The greatest-common divisor 

30 
While loops 

• Testing with zero: the gcd should be the other number 
Enter the first integer: 0 

Enter a second integer: 521 

Floating point exception (core dumped) 

 

– Issue, just like dividing by zero causes a program to terminate 

 so does calculating m%0 

The greatest-common divisor 

31 
While loops 

• Thus, after we enter the numbers, we should check before we run 
the algorithm: 

    // Make sure m >= n 

    if ( m < n ) { 

        int tmp{m}; 

        m = n; 

        n = tmp; 

    } 

 

    if ( n == 0 ) { 

        std::cout << "The gcd is " << m << std::endl; 

        return 0; 

    } 

 

    // Perform our gcd algorithm 

    //    ... 

The greatest-common divisor 

32 
While loops 

• The following two are essentially identical: 

int sum{0}; 

 

for ( int k{0}; k < n; ++k ) { 

    sum += k; 

} 

 

int sum{0}; 

int k{0}; 

 

while ( k < n ) { 

    sum += k; 

    ++k; 

} 

Every for loop can be 
written as a while loop 



2020-07-06 

9 

33 
While loops 

• Question: 

– What do you do if you accidentally execute a program that has an 
infinite loop? 

 

• Solution: 

– In Eclipse, there is a stop button that becomes active when a 
program is executing 

 

 

– Other IDEs will have similar features 

– At the console, press Ctrl-C 

Infinite loop? 

34 
While loops 

Summary 

• Following this lesson, you now 

– Understand how to implement while loops in C++ 

– Seen how to implement various algorithms requiring looping 
statements: 

• Playing guessing games 

• Finding all prime factors 

• The Collatz conjecture 

• The factorial function 

– Understand how to convert a description of an algorithm to one that 
you can program 

• The example we used was the greatest-common divisor 

– Understand that all for loops can be written as while loops 

– Know how to terminate a program in an infinite loop 

35 
While loops 

References 

[1] Wikipedia 

 https://en.wikipedia.org/wiki/While_loop 

[2] cplusplus.com 

 http://www.cplusplus.com/doc/tutorial/control/ 

[3]  tutorialspoint 

 https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm 

 

36 
While loops 

Acknowledgments 

Proof read by Dr. Thomas McConkey and Charlie Liu. 

https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
https://en.wikipedia.org/wiki/While_loop
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
http://www.cplusplus.com/doc/tutorial/control/
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm
https://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm


2020-07-06 

10 

37 
While loops 

Colophon  

These slides were prepared using the Georgia typeface. Mathematical 
equations use Times New Roman, and source code is presented using 
Consolas. 

 

The photographs of lilacs in bloom appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical 
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see 

https://www.rbg.ca/ 

for more information. 

38 
While loops 

Disclaimer 

These slides are provided for the ECE 150 Fundamentals of 
Programming course taught at the University of Waterloo. The 
material in it reflects the authors’ best judgment in light of the 
information available to them at the time of preparation. Any reliance 
on these course slides by any party for any other purpose are the 
responsibility of such parties. The authors accept no responsibility for 
damages, if any, suffered by any party as a result of decisions made or 
actions based on these course slides for any other purpose than that for 
which it was intended. 

 


